Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
1.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734623

RESUMEN

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Asunto(s)
Actinidia , Genoma Bacteriano , Genómica , Filogenia , Enfermedades de las Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , China , Actinidia/microbiología , Virulencia/genética , Enfermedades de las Plantas/microbiología
2.
Physiol Plant ; 176(3): e14311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715208

RESUMEN

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Asunto(s)
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii , Citocininas , Resistencia a la Enfermedad , Nicotiana , Enfermedades de las Plantas , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Citocininas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Mutación
3.
Physiol Plant ; 176(3): e14335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705728

RESUMEN

Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Sonido , Resistencia a la Enfermedad/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Catecol Oxidasa/metabolismo , Catecol Oxidasa/genética
4.
Genes (Basel) ; 15(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674433

RESUMEN

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is able to infect many economically important crops and thus causes substantial losses in the global agricultural economy. Pst DC3000 can be divided into virulent lines and avirulent lines. For instance, the pathogen effector avrRPM1 of avirulent line Pst-avrRpm1 (Pst DC3000 avrRpm1) can be recognized and detoxified by the plant. To further compare the pathogenicity mechanisms of virulent and avirulent Pst DC3000, a comprehensive analysis of the acetylome and succinylome in Arabidopsis thaliana was conducted following infection with virulent line Pst DC3000 and avirulent line Pst-avrRpm1. In this study, a total of 1625 acetylated proteins encompassing 3423 distinct acetylation sites were successfully identified. Additionally, 229 succinylated proteins with 527 unique succinylation sites were detected. A comparison of these modification profiles between plants infected with Pst DC3000 and Pst-avrRpm1 revealed significant differences. Specifically, modification sites demonstrated inconsistencies, with a variance of up to 10% compared to the control group. Moreover, lysine acetylation (Kac) and lysine succinylation (Ksu) displayed distinct preferences in their modification patterns. Lysine acetylation is observed to exhibit a tendency towards up-regulation in Arabidopsis infected with Pst-avrRpm1. Conversely, the disparity in the number of Ksu up-regulated and down-regulated sites was not as pronounced. Motif enrichment analysis disclosed that acetylation modification sequences are relatively conserved, and regions rich in polar acidic/basic and non-polar hydrophobic amino acids are hotspots for acetylation modifications. Functional enrichment analysis indicated that the differentially modified proteins are primarily enriched in the photosynthesis pathway, particularly in relation to light-capturing proteins. In conclusion, this study provides an insightful profile of the lysine acetylome and succinylome in A. thaliana infected with virulent and avirulent lines of Pst DC3000. Our findings revealed the potential impact of these post-translational modifications (PTMs) on the physiological functions of the host plant during pathogen infection. This study offers valuable insights into the complex interactions between plant pathogens and their hosts, laying the groundwork for future research on disease resistance and pathogenesis mechanisms.


Asunto(s)
Arabidopsis , Lisina , Enfermedades de las Plantas , Proteómica , Pseudomonas syringae , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/metabolismo , Pseudomonas syringae/genética , Acetilación , Lisina/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteómica/métodos , Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Procesamiento Proteico-Postraduccional , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo
5.
Plant J ; 118(3): 839-855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271178

RESUMEN

Arabidopsis thaliana WRKY proteins are potential targets of pathogen-secreted effectors. RESISTANT TO RALSTONIA SOLANACEARUM 1 (RRS1; AtWRKY52) is a well-studied Arabidopsis nucleotide-binding and leucine-rich repeat (NLR) immune receptor carrying a C-terminal WRKY domain that functions as an integrated decoy. RRS1-R recognizes the effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia pseudosolanacearum by direct interaction through its WRKY domain. AvrRps4 and PopP2 were previously shown to interact with several AtWRKYs. However, how these effectors selectively interact with their virulence targets remains unknown. Here, we show that several members of subgroup IIIb of the AtWRKY family are targeted by AvrRps4 and PopP2. We demonstrate that several AtWRKYs induce cell death when transiently expressed in Nicotiana benthamiana, indicating the activation of immune responses. AtWRKY54 was the only cell death-inducing AtWRKY that interacted with both AvrRps4 and PopP2. We found that AvrRps4 and PopP2 specifically suppress AtWRKY54-induced cell death. We also demonstrate that the amino acid residues required for the avirulence function of AvrRps4 and PopP2 are critical for suppressing AtWRKY54-induced cell death. AtWRKY54 residues predicted to form a binding interface with AvrRps4 were predominantly located in the DNA binding domain and necessary for inducing cell death. Notably, one AtWRKY54 residue, E164, contributes to affinity with AvrRps4 and is exclusively present among subgroup IIIb AtWRKYs, yet is located outside of the DNA-binding domain. Surprisingly, AtWRKY54 mutated at E164 evaded AvrRps4-mediated cell death suppression. Taking our observations together, we propose that AvrRp4 and PopP2 specifically target AtWRKY54 to suppress plant immune responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Muerte Celular , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Ralstonia/patogenicidad , Ralstonia/genética , Ralstonia solanacearum/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Integr Plant Biol ; 65(7): 1613-1619, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36856338

RESUMEN

Plant cells possess a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI responses in Arabidopsis, such as resistance to the non-adapted bacterium Pseudomonas syringae pv. tomato DC3000 hrcC- . In a forward-genetic screen for suppressors of cpr5, we identified the mediator protein MED4. Mutation of MED4 in cpr5 greatly restored the defective PTI of cpr5. Our findings reveal that CPR5 plays opposite roles in regulating PTI and ETI, and genetically regulates PTI via MED4.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de la Membrana , Inmunidad de la Planta , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Proteínas de la Membrana/inmunología , Pseudomonas syringae/patogenicidad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Receptores de Reconocimiento de Patrones/inmunología , Proteínas NLR/inmunología
7.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835638

RESUMEN

Nucleocytoplasmic transport receptors play key roles in the nuclear translocation of disease resistance proteins, but the associated mechanisms remain unclear. The Arabidopsis thaliana gene SAD2 encodes an importin ß-like protein. A transgenic Arabidopsis line overexpressing SAD2 (OESAD2/Col-0) showed obvious resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) compared to the wild type (Col-0), but the knockout mutant sad2-5 was susceptible. Transcriptomic analysis was then performed on Col-0, OESAD2/Col-0, and sad2-5 leaves at 0, 1, 2, and 3 days post-inoculation with Pst DC3000. A total of 1825 differentially expressed genes (DEGs) were identified as putative biotic stress defense genes regulated by SAD2, 45 of which overlapped between the SAD2 knockout and overexpression datasets. Gene Ontology (GO) analysis indicated that the DEGs were broadly involved in single-organism cellular metabolic processes and in response to stimulatory stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) biochemical pathway analysis revealed that many of the DEGs were associated with the biosynthesis of flavonoids and other specialized metabolites. Transcription factor analysis showed that a large number of ERF/AP2, MYB, and bHLH transcription factors were involved in SAD2-mediated plant disease resistance. These results provide a basis for future exploration of the molecular mechanisms associated with SAD2-mediated disease resistance and establish a set of key candidate disease resistance genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Carioferinas/metabolismo , Enfermedades de las Plantas/genética , Pseudomonas syringae/patogenicidad , Transducción de Señal , Transcriptoma
8.
Mol Plant Microbe Interact ; 35(7): 627-637, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35345887

RESUMEN

Chloroplasts serve as cold priming hubs modulating the transcriptional response of Arabidopsis thaliana to a second cold stimulus for several days by postcold accumulation of thylakoid ascorbate peroxidases (tAPX). In an attempt to investigate cross-priming effects of cold on plant pathogen protection, we show here that such a single 24-h cold treatment at 4°C decreased the susceptibility of Arabidopsis to virulent Pseudomonas syringae pv. tomato DC3000 but did not alter resistance against the avirulent P. syringae pv. tomato avRPM1 and P. syringae pv. tomato avrRPS4 strains or the effector-deficient P. syringae pv. tomato strain hrcC-. The effect of cold priming against P. syringae pv. tomato was active immediately after cold exposure and memorized for at least 5 days. The priming benefit was established independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) or activation of the immune-related genes NHL10, FRK1, ICS1 and PR1 but required thylakoid-bound as well as stromal ascorbate peroxidase activities because the effect was absent or weak in corresponding knock-out-lines. Suppression of tAPX postcold regulation in a conditional-inducible tAPX-RNAi line led to increased bacterial growth numbers. This highlights that the plant immune system benefits from postcold regeneration of the protective chloroplast peroxidase system.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frío , Enfermedades de las Plantas , Arabidopsis/enzimología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Peroxidasas/genética , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Plastidios/enzimología , Plastidios/genética , Pseudomonas syringae/patogenicidad
9.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35008934

RESUMEN

Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.


Asunto(s)
Nicotiana/metabolismo , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Receptores Sensibles al Calcio/fisiología , Factores de Virulencia/metabolismo , Actinidia/fisiología , Enfermedades de las Plantas , Infecciones por Pseudomonas , Pseudomonas syringae/metabolismo , Receptores Sensibles al Calcio/metabolismo , Nicotiana/fisiología , Virulencia
11.
Plant Cell Rep ; 41(2): 347-363, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34797387

RESUMEN

KEY MESSAGE: Selective Arabidopsis thaliana inositol phosphate kinase functions modulate response amplitudes in innate immunity by balancing signalling adjustments with phosphate homeostasis networks. Pyrophosphorylation of InsP6 generates InsP7 and/or InsP8 containing high-energy phosphoanhydride bonds that are harnessed during energy requirements of a cell. As bona fide co-factors for several phytohormone networks, InsP7/InsP8 modulate key developmental processes. With requirements in transducing jasmonic acid (JA) and phosphate-starvation responses (PSR), InsP8 exemplifies a versatile metabolite for crosstalks between different cellular pathways during diverse stress exposures. Here we show that Arabidopsis thaliana INOSITOL PENTAKISPHOSPHATE 2-KINASE 1 (IPK1), INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE 1 (ITPK1), and DIPHOSPHOINOSITOL PENTAKISPHOSPHATE KINASE 2 (VIH2) implicated in InsP8 biosynthesis, suppress salicylic acid (SA)-dependent immunity. In ipk1, itpk1 or vih2 mutants, constitutive activation of defenses lead to enhanced resistance against the Pseudomonas syringae pv tomato DC3000 (PstDC3000) strain. Our data reveal that upregulated SA-signaling sectors potentiate increased expression of several phosphate-starvation inducible (PSI)-genes, previously known in these mutants. In reciprocation, upregulated PSI-genes moderate expression amplitudes of defense-associated markers. We demonstrate that SA is induced in phosphate-deprived plants, however its defense-promoting functions are likely diverted to PSR-supportive roles. Overall, our investigations reveal selective InsPs as crosstalk mediators in defense-phosphate homeostasis and in reprogramming stress-appropriate response intensities.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfotransferasas (Aceptor de Grupo Alcohol) , Inmunidad de la Planta , Ácido Salicílico , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/inmunología , Mutación , Fosfatos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Cell Environ ; 45(1): 236-247, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34708407

RESUMEN

Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant-plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant-plant interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Sistemas de Secreción Tipo III/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Aire , Capsicum/fisiología , Cucumis sativus/fisiología , Regulación de la Expresión Génica de las Plantas , Octanoles/farmacología , Phaseolus/fisiología , Inmunidad de la Planta/efectos de los fármacos , Transducción de Señal , Nicotiana/fisiología , Compuestos Orgánicos Volátiles/farmacología
13.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34724007

RESUMEN

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Asunto(s)
Acetiltransferasas/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Proteínas Bacterianas/antagonistas & inhibidores , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/inmunología , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34799454

RESUMEN

Pathogenic effector proteins use a variety of enzymatic activities to manipulate host cellular proteins and favor the infection process. However, these perturbations can be sensed by nucleotide-binding leucine-rich-repeat (NLR) proteins to activate effector-triggered immunity (ETI). Here we have identified a small molecule (Zaractin) that mimics the immune eliciting activity of the Pseudomonas syringae type III secreted effector (T3SE) HopF1r and show that both HopF1r and Zaractin activate the same NLR-mediated immune pathway in Arabidopsis Our results demonstrate that the ETI-inducing action of pathogenic effectors can be harnessed to identify synthetic activators of the eukaryotic immune system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/microbiología , Unión Proteica/efectos de los fármacos , Pseudomonas syringae/patogenicidad
15.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768971

RESUMEN

The intrinsic defense mechanisms of plants toward pathogenic bacteria have been widely investigated for years and are still at the center of interest in plant biosciences research. This study investigated the role of the AtbZIP62 gene encoding a transcription factor (TF) in the basal defense and systemic acquired resistance in Arabidopsis using the reverse genetics approach. To achieve that, the atbzip62 mutant line (lacking the AtbZIP62 gene) was challenged with Pseudomonas syringae pv. tomato (Pst DC3000) inoculated by infiltration into Arabidopsis leaves at the rosette stage. The results indicated that atbzip62 plants showed an enhanced resistance phenotype toward Pst DC3000 vir over time compared to Col-0 and the susceptible disease controls, atgsnor1-3 and atsid2. In addition, the transcript accumulation of pathogenesis-related genes, AtPR1 and AtPR2, increased significantly in atbzip62 over time (0-72 h post-inoculation, hpi) compared to that of atgsnor1-3 and atsid2 (susceptible lines), with AtPR1 prevailing over AtPR2. When coupled with the recorded pathogen growth (expressed as a colony-forming unit, CFU mL-1), the induction of PR genes, associated with the salicylic acid (SA) defense signaling, in part explained the observed enhanced resistance of atbzip62 mutant plants in response to Pst DC3000 vir. Furthermore, when Pst DC3000 avrB was inoculated, the expression of AtPR1 was upregulated in the systemic leaves of Col-0, while that of AtPR2 remained at a basal level in Col-0. Moreover, the expression of AtAZI (a systemic acquired resistance -related) gene was significantly upregulated at all time points (0-24 h post-inoculation, hpi) in atbzip62 compared to Col-0 and atgsnor1-3 and atsid2. Under the same conditions, AtG3DPH exhibited a high transcript accumulation level 48 hpi in the atbzip62 background. Therefore, all data put together suggest that AtPR1 and AtPR2 coupled with AtAZI and AtG3DPH, with AtAZI prevailing over AtG3DPH, would contribute to the recorded enhanced resistance phenotype of the atbzip62 mutant line against Pst DC3000. Thus, the AtbZIP62 TF is proposed as a negative regulator of basal defense and systemic acquired resistance in plants under Pst DC3000 infection.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/patogenicidad , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genes de Plantas , Fenotipo , Plantas Modificadas Genéticamente , Mapas de Interacción de Proteínas/genética , Genética Inversa
16.
Microbiol Res ; 253: 126869, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34597823

RESUMEN

Chemotaxis is crucial for Pseudomonas syringae pv. tabaci (Pta) 6605 to evoke disease in tobacco plants. Pta6605 harbors more than fifty genes for methyl-accepting chemotaxis proteins (mcp), but almost all are functionally uncharacterized. Previously we identified a dCache_1 type MCP in Pta6605 that mediates chemotaxis to γ-aminobutyric acid, called McpG. In this study, we characterized four more dCache_1 type MCPs, three of which, PscA, PscB, and PscC2, are responsible for sensing amino acids. Using a capillary chemotaxis assay, we observed that PscA, PscB, and PscC2 mutant strains had reduced chemotaxis to most amino acids, indicating that PscA and PscB mediate chemotaxis to 14 amino acids, while PscC2 has a slightly narrower ligand recognition, mediating chemotaxis to 12 amino acids. Other cellular functions were also affected in ΔpscB and ΔpscC2: swarming motility was reduced, and biofilm formation was increased. Furthermore, ΔpscB and ΔpscC2 but not ΔpscA had reduced virulence in the host tobacco plant. On the other hand, ΔpscC1 was defective in motility and did not even respond to yeast extract and was unable to cause disease. These findings supported the idea that the chemosensory pathway correlated with virulence-related phenotypes. Amino acids are abundant in tobacco apoplast; having multiple MCPs appears to support the invasion of Pta6605 into the plant.


Asunto(s)
Aminoácidos , Proteínas Bacterianas , Interacciones Microbiota-Huesped , Pseudomonas syringae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Microbiota-Huesped/fisiología , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Nicotiana/microbiología
17.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639149

RESUMEN

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Asunto(s)
Arabidopsis/inmunología , Botrytis/patogenicidad , Resistencia a la Enfermedad/inmunología , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/enzimología , Nicotiana/inmunología , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
18.
Plant Cell Rep ; 40(12): 2341-2356, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34486076

RESUMEN

KEY MESSAGE: RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.


Asunto(s)
Proteínas de Arabidopsis/genética , Productos Agrícolas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Nicotiana/genética , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Productos Agrícolas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoilación , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Homología de Secuencia de Aminoácido , Nicotiana/metabolismo
19.
BMC Plant Biol ; 21(1): 425, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537002

RESUMEN

BACKGROUND: The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. RESULTS: In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. CONCLUSIONS: This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


Asunto(s)
Catharanthus/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Catharanthus/enzimología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Interacciones Huésped-Patógeno , Filogenia , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/virología , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Dominios Proteicos , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Nicotiana/microbiología , Nicotiana/virología , Factores de Transcripción/genética
20.
BMC Plant Biol ; 21(1): 429, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548030

RESUMEN

BACKGROUND: Surveillance of potential pathogens is a key feature of plant innate immunity. For non-self-recognition plants rely on the perception of pathogen-derived molecules. Early post-perception events activate signaling cascades, leading to the synthesis of defense-related proteins and specialized metabolites, thereby providing a broad-spectrum antimicrobial coverage. This study was concerned with tracking changes in the tomato plant metabolome following perception of the flagellum-derived elicitors (Flg22 and FlgII-28). RESULTS: Following an untargeted metabolomics workflow, the metabolic profiles of a Solanum lycopersicum cultivar were monitored over a time range of 16-32 h post-treatment. Liquid chromatography was used to resolve the complex mixture of metabolites and mass spectrometry for the detection of differences associated with the elicitor treatments. Stringent data processing and multivariate statistical tools were applied to the complex dataset to extract relevant metabolite features associated with the elicitor treatments. Following perception of Flg22 and FlgII-28, both elicitors triggered an oxidative burst, albeit with different kinetic responses. Signatory biomarkers were annotated from diverse metabolite classes which included amino acid derivatives, lipid species, steroidal glycoalkaloids, hydroxybenzoic acids, hydroxycinnamic acids and derivatives, as well as flavonoids. CONCLUSIONS: An untargeted metabolomics approach adequately captured the subtle and nuanced perturbations associated with elicitor-linked plant defense responses. The shared and unique features characterizing the metabolite profiles suggest a divergence of signal transduction events following perception of Flg22 vs. FlgII-28, leading to a differential reorganization of downstream metabolic pathways.


Asunto(s)
Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Pseudomonas syringae/patogenicidad , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/microbiología , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...